
MDE: Model Differencing

Joeri Reyns

University of Antwerp

Abstract

Model differencing and versioning are important steps during any type of development,
certainly in collaboration based projects it can give a clear view of which structural changes
have been made or which implementations have been updated. The problem of determining
model differences is intrinsically complex but can be tackled by cohering to the general
approach of performing three steps: calculation, representation and visualisation. Although
these three steps usually suffice for calculating the differences between models, the difference
model can either only be used for specific models or are not represented in the domain specific
language of the model. Therefor this paper will first present an overview of the general
methodology with some extra information on how model representations could influence
the performance, intuitiveness and expressiveness of the difference model. Afterwards this
paper will present a differencing tool which works on top of AToMPM [1] to allow model
differencing based on their meta-model.

Keywords: Model Differencing, model based optimisations, AToMPM [1]

1. Introduction

Model differencing and versioning are important steps during any type of development,
certainly in collaboration based projects it can give a clear view of which structural changes
have been made or which implementations have been updated. It is known that the prob-
lem of determining model differences is anything but trivial but there are generally accepted
techniques to limit the search space. Do note that limiting the search space often leads to a
trade off between performance and expressiveness. Given the purpose of the application one
might prefer performance over expressiveness but in general when developing models one can
argue that understanding what impact made differences have is more important. Therefore
the search for intuitive and expressive model differencing algorithms still continue.
For now this paper provides a general overview of the thought process of how to tackle
model differencing problems and how the representation of the models could influence the
algorithms. In section 2 the general approach will be discussed based on three steps, cal-
culation, representation and visualisation. Section 3 will provide a deeper insight into the

Email address: joeri.reyns@student.uantwerpen.be (Joeri Reyns)

January 21, 2016



calculation step by giving examples of how different model representations effect the differ-
ence calculations. In 4 the learnt approaches will be applied to develop a differencing tool
for AToMPM [1]. A conclusion will be formulated in section 5 based on what is shown in
the previous sections. Lastly we will provide some ideas of future work in section 6

2. General approach

The problem of determining model differences is intrinsically complex [2] but can be
tackled by different views on the problem. The most common views to solve model differ-
ences are based on constraint satisfaction, search or optimisation views. While constraint
satisfaction tries to match certain elements based on their responsibilities it is not always
that much different from using search techniques to find corresponding elements. Therefor
the representation of the model often gets changed to shift it towards a representation where
good and efficient optimisations already exist. This last part will be explained in more detail
in section 3.

2.1. Calculation

This step involves finding all the elements and checking which elements changed and
which not. This step highly depends on which representation was chosen for the model.
Also the actual modelling of the types of changes can be different but generally they all
conform to the same thought process. Lets look at [3] to explain the thought process. Here
the differences get mapped onto three different kinds of differences:

• Move Differences: Renumbering of elements and differences like rearrangement of at-
tributes or methods of a class.

• Structural Differences: Addition/deletion of attributes or elements, or indication that
an element only belongs to one of the original models because there exist no other
element with the same structure in the other model.

• Update Differences: This are differences within one single element i.e. attribute value
or name changes. This can only occur when the algorithm identifies two attributes as
similar. Otherwise it is a structural difference.

In general the calculation step will result in a list of elements contained within the model,
and a list of alteration each element has gone through.

2.2. Representation

The Representation of differences can be divided into two main techniques ”directed
deltas” and ”symmetric deltas” as explained very well by [4]. Cicchetti et Al. refers to
these techniques as visualisation techniques but here they will be presented as ways to
represent the alterations of the models. This is done because, although there are two different
techniques how to specify changes, there still are many options of how to actually visualise
the differences. Both techniques store the differences in a so called delta document. Delta

2



refers to the mathematical interpretation where it means a (small) change compared to the
original. In next two subsections we will discuss the differences between both approaches and
a deeper description will be provided based on the examples introduced in [4] but visualised
by own models.

Figure 1: Different versions of a system design

2.2.1. Directed Deltas

Directed delta represents delta documents as the sequence of the operations needed to
obtain the new version from the old one. Which is actually a very procedural based way
of representing the changes. Like in programming, procedural representation leads to some
drawbacks like being quite ineffective to be adopted for documenting changes. But has
it merits when trying to model transformation rules. More will became clear after the
example:
Edit Scripts represents an implementation of the directed delta approach. Sequences of
primitive operations, like add, edit and delete, describe in procedural terms the modifications
a model has been subject to. Do note that these operations strongly relate to the calculation
algorithm because of what optimisation techniques are used. The biggest advantage of this

3



technique is the compositionality, by applying the composition of deltas we provide the
system a way to obtain the new document based on the older version. This property together
with the optimisation possibilities makes this technique highly appreciated for its efficiency
while readability and intuitiveness are more lacking [4].

2.2.2. Symmetric Deltas

Symmetric delta represents delta documents as the set difference between two compared
versions. Also often referred to as coloring techniques which present advantages over pro-
cedural methods, for instance differences can be shown as a model which enhances the
intuitiveness and can provide the basis for a variety of subsequent analysis. Like directed
deltas Cicchetti et Al. also provided an example for coloring techniques:
Coloring techniques permit the modifications to be displayed in a diagram which is the union
of the two base models, with the common parts of both base diagrams painted black and
the specific elements denoted by color, tags or symbols respectively. It is a symmetric delta
approach since it directly compares two versions of a model and highlights the changes. One
can see that by showing both models it becomes more beneficial towards the designer be-
cause it enhances intuitiveness and readability. However this only works if the base models
are not to large and not too many updates are applied to the same elements.

Figure 2: An example of a coloring technique

4



2.3. Visualisation

Visualisation is an important part of model differencing because it defines how intuitive
and readable the differences are based on the expressiveness of the representation technique.
The best way would be to develop a concrete syntax which maximises these properties. But
concrete syntax development is not really in the scope of model differencing and therefor we
will leave it at that.

3. Model representation based optimisations

3.1. String based optimisations

When representing a model as just a document with lines of text the differencing can be
done by lexicographical analysis. Which is probably the easiest and most commonly used
type of versioning. Both [5] and [6] present existing tools and their downsides. Next follows
a citation from [5] which very well captures the string based versioning.
”There has been some work that models the changes of a systems components in terms of
CVS-like deltas, which record lines of code that have been added, deleted, or changed, as
reported by GNU diff-like tools. These approaches are simple to implement, since it is easy
to extract the deltas from a versioning system, such as Concurrent Version System (CVS).
Such delta reports are intended to assist software developers in merging different revisions
of the system source code. However, GNU diff-like tools are essentially lexical-differencing
tools and ignore the high-level logical/ structural changes of the software system. When the
intension is to build an accurate evolutionary history of a software system, GNU diff misses
a lot of pertinent information. For example, a class renaming or a method movement to
another class would most likely be reported as two separate activities: the original entity
has been removed and the modified one has been added.”
In other words, if we want a more expressive versioning system, we need a way to add domain
specific knowledge to the models. Therefor we will further look into some examples based
on trees and graphs where the abstraction level enables us to add this kind of information
which will result in a performance trade off.

3.2. Tree based optimisations

Given a tree based model representation it becomes apparent that structural differences
are easier to find while the complexity does not change that much as shown by [7] where they
use an xml based representation (which can be seen as a tree structure) where the easiness
of lexicographical analysis can still be used but augmented by extra structural information.

5



Figure 3: Tree based edit script example

Figure 4: Tree representation example

6



3.3. Graph based optimisations

Calculating model differences is a difficult task since within graphs it relies on model
matching, which can be reduced to graph isomorphism: the problem of finding correspon-
dences between two graphs. Theoretically it is proven that the graph isomorphism problem
is NP-hard [2]. But this does not mean that there are no tricks to deal with this complexity.
[5] Provides their own graph based solution for java/uml based differencing while [2] lists
some known techniques to add more information to the graph in such a way the isomorphism
problem gets easier.

• Static Identity-Based Matching: Here it is assumed that each model element has a
persistent and non-volatile unique identifier that is assigned upon creation (AToMPM).

• Signature-Based Matching: In this technique, the identity of each element is not static,
but instead it is a signature calculated dynamically from the values of its features by
means of a (user)defined function.

• Similarity-Based Matching: Above two methods solve the problem in a sort of true /
false manner. this category treats models as typed attribute graphs and attempt to
identify matching elements based on the aggregated similarity of their features. Note
that not every feature is equally important for model matching (e.g. attribute order
or class names vs abstract features)

• Custom Language-Specific Matching Algorithms: This category uses the knowledge
of particular modelling languages so it can incorporate the semantics of the target
language in order to provide more accurate results and drastically reduce the search
space.

UMLDiff is an example of a custom language specific matching algorithm and is used
for automatically detecting structural changes between the designs of subsequent versions
of object-oriented software. It takes as input two class models of a Java software system,
reverse engineered from two corresponding code versions. It produces as output a change
tree, i.e., a tree of structural changes, that reports the differences between the two design
versions [5].

4. Model differencing in AToMPM[1]

Now that the general approach to model differencing has been clarified some issues
still remain, the difference model can either only be used for specific models or are not
represented in the domain specific language of the model. Modeling in AToMPM provides
a way to solve those problems to some extent. The difference model will still only be able
to difference models which are generated by AToMPM but AToMPM allows users to define
meta-models en build models using those meta-models. This information can be used to
build a difference model which works for the AToMPM model structure in a domain specific
way. As mentioned earlier the calculation step is very model representation dependent, so
first a clear look will be taken in how AToMPM represents its models.

7



4.1. Model structure

AToMPM is a javascript based modelling tool which works in Google Chrome web-
browser, the actual model is stored in json format and savefiles are actually saved pretty
prints of that model to a text file but given a different extension based on the purpose of
the model. Figure 5 shows the general structure of the model.

Figure 5: JSON model example in AToMPM

AToMPM builds a model based on the abstract and concrete syntax models of the domain
specific language, that is what the ”asm” and ”csm” stand for. The nodes contains a list
of json elements with the AToMPM identifiers (integer numbers) as a key and all their
information as values of that specific node. Therefor the nodes element in asm and csm
should contain the same list of keys. The actual values on the other hand are different
because asm contains the abstract syntax information and csm holds the concrete syntax
information of the element. Do note that edges within the model should not be confused
with the edges in the abstract syntax. Edges in the model are still based on both an abstract
and concrete syntax and are therefor stored as nodes within both asm and csm. The edges
in asm simply represent the connection between two nodes in the asm nodes list. So given
two elements ”A” and ”B” which are connected with an edge named ”AConnectsB”, the
stored model would contain three nodes 0 : ”A”, 1 : ”B” and 2 : ”AConnectsB”. Edges in
asm on the other hand will contain two entries: 0 : {src: 0 , dest: 2} and 1 : {src: 2, dest:
1}. Edges in csm will always be empty.

4.2. Difference calculation

The model structure of AToMPM enables us to easily check if a model element stayed
unchanged within two models. Namely the csm and asm of that specific node should be the
same. If not the node has either been modified, deleted or added. AToMPM for ease of use
doesn’t fill in id gaps, so if you delete a node that node’s id will never be filled automatically.
Which makes it easy to define additions and deletions, so if a model element is changed but
not added or deleted, then it has to be modified. This last thing is true when differencing
models of the same meta-model. When differencing two models with different meta-models

8



one might rather see those changes as deletions and additions than modifications. Therefor
we allow the option to classify it in either of those two ways. Next, for not doing double
work, we first generate the difference classes of all nodes in the second model, because it
is considered the later model and therefor hold more information. By doing it this way a
single pass over the ”nodes” keys of the second model, every key that is in the second model
and keys which are in both will already have their difference class applied. After that only
the deleted nodes of the first model have to be classified. This is done by a single pass over
the keys in the first model and check if they already have a difference class added or not. If
they haven’t then those nodes are either deleted or moved. For now the used algorithm still
acts in a more naive way and only models these nodes as deletions.

4.3. Difference representation

The difference representation is based on the symmetric delta approach, build a coloured
graph where each node has a difference class attribute. First of all a difference model is build
within the second model during the calculation step. All needed nodes of both the first and
second model are combined, the values of all modified and deleted nodes and edges are saved
and added to the second model. All needed information for showing the differences is now
present in the second model and is from now on used as the difference model, because it
holds all information. When the difference calculation is completed the difference model is
transformed into the difference graph. The difference graph is a graph which splits the nodes
of AToMPM in two categories, namely nodes and edges, in 4.1 we showed how edges are
represented within the model. This we now want to revert so that edges can be visualised
differently later but without the need of searching through the nodes once more. To truly
split the nodes from the edges the AToMPM ”src” and ”dest” attributes of the asm.edges
get added to the correct node and are stored in the list of edges of the difference graph. All
nodes that are no edges are saved within the nodes list of the difference graph. Splitting the
edges from the nodes is done because of the trade off between cohering to the meta-model
versus the restriction on the expressiveness based on the meta-model. Therefor a uniform
way of representing edges is chosen to make sure the differences in edges is expressive enough
while maintaining all needed difference information. For both edges and nodes all hidden
attributes start with a ’$’, this is useful information for type checking and visualisation and
are therefor kept.

4.4. Difference visualisation

Meta-modelling in AToMPM consists of modelling both abstract and concrete syntax
models and compiling both into a meta-model. Since any model saved through AToMPM
contains both abstract and concrete syntax information we don’t have to search for a specific
differencing representation. We can simply use the abstract and concrete syntax of the model
and add background colours for showing the difference classes. This visualisation is based
on figures and styles generated by a third party javascript library named Raphaël [8] which
uses the html5 canvas property to draw figures on a html page. This library would suffice
if edges were visualised as they are in AToMPM, but since we opted for visualising edges in
a more standard way, another third party library was added namely the community version

9



of jsPlumb [9]. Figures 6 and 7 shows the difference in visualisation of the main concrete
syntax used in AToMPM. We can showe this in our differencing tool by selecting the same
version for first and second document. This way every element should be unchanged so that
we can visualise the model as is.

Figure 6: Concrete Syntax of AToMPM

10



Figure 7: Concrete Syntax of AToMPM shown in our tool

With this it is clear that we can visualise most of what AToMPM can visualise at this
moment. The clear difference is how we chose to visualise the edges. Figure 2 already
shows a difference model of the models in figure 1. The tool works by adding buttons at
the absolute positions of the elements on screen based on the bounding box of the elements
drawn by Raphaël [8]. The cascading style sheet (css) class of the difference class of that
button defines the visualisation of the button. Unchanged has a clear button, modified a
blue, deleted a red and added a green button. Clicking on the button or the arrows on edges
will show more information about their attributes and differences as shown in figure 8.

11



Figure 8: Concrete Syntax of AToMPM shown in our tool

As an extra feature one can also compare two models which have different metamodels.
This can be usefull to compare ramified models with their originals. Since in this case the
meta-models differ one could argue that all elements from the first model are deleted and
all elements from the second model are added. But in checking the ramification process one
might what to check the differences. Therefor users have the choice how to handle type
differences within the calculation part. Figure 9 shows the differences in visualisation in
both options.

Figure 9: Type difference as Deleted + Added versus Modified

12



5. Conclusion

There is a general consensus of how to tackle model differencing. Namely first find all
elements of the models, then see in what manner they differ from the previous version.
Secondly represent these differences in a delta document by either directed or symmetric
deltas while lastly visualising the differences in a way that is useful for the problem (e.g.
uml diagrams, edit trees, ...). But clearly for the calculation step one still needs problem
specific algorithms to find the actual differences. As shown string based differencing has high
performance but lacks the expressiveness, while graphs can be just the other way around.
Adding extra information information to the graph can help because it limits the search
space. Therefor as [4] suggest it would be better to develop a tool which allows differencing
based on meta-models and their respective abstract and concrete syntax. Modelling in
meta-model driven modelling tools like AToMPM enables us of developing differencing tools
which utilise these strengths. As a proof of concept we developed our own differencing
tool for AToMPM models. It utilises the json representation of the models to difference
in a somewhat naive way but most importantly shows the differences in a domain specific
notation for a more expressive and intuitive representation.

6. Future work

For future work we could further improve the differencing algorithm to also support a
directed delta approach and find other difference classes like movement and other types of
structural changes.

References

[1] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Ergin, Atompm: A web-based
modeling environment., in: Demos/Posters/StudentResearch@ MoDELS, 2013, pp. 21–25.

[2] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, Richard F. Paige, Different models for
model matching: An analysis of approaches to support model differencing.

[3] Jörg Niere, Visualizing differences of uml diagrams with fujaba, FUJABA Days 2004 (2004) 31–34.
[4] Antonio Cicchetti, Davide Di Ruscio, Alfonso Pierantonio, A metamodel independent ap-

proach to difference representation, Journal of Object Technology 6 (9) (2007) 165–185.
doi:http://www.jot.fm/issues/issues 2007 10/paper9.

[5] Zhenchang Xing and Eleni Stroulia, Umldiff: An algorithm for object-oriented design differencing.
[6] Kyriakos Komvoteas, Xml diff and patch tool.
[7] Yuan Wang, David J. DeWitt, Jin-Yi Cai, X-diff: An effective change detection algorithm for xml

documents.
[8] D. Baranovskiy, Raphal JavaScript Library, [Online;http://raphaeljs.com/].
[9] I. jsPlumb, jsPlumb Build Connectivity Fast, [Online;https://jsplumbtoolkit.com/].

13


