
MDE: Model Differencing

Joeri Reyns

University of Antwerp

Abstract

Model differencing and versioning are important steps during any type of development. Cer-
tainly in collaboration based projects it can give a clear view of which structural changes
have been made or which implementations have been updated. The problem of determin-
ing model differences is intrinsically complex but can be tackled by cohering to the general
approach of performing three steps: calculation, representation and visualisation. Both
representation and visualisation or often based on either directed or symmetric delta doc-
uments, the former uses a procedural way of describing the changes while the latter uses
techniques like coloring to show the differences between two models. Both techniques have
their merits but are both highly dependent on the information gathered from the calculation
step. Simple lexicographical analysis of text files can be implemented in an easy manner but
lacks the expressiveness one could want from a differencing algorithm. Model differencing
in graphs on the other hand can be reduced to graph isomorphism which is known to be
NP-hard. By adding structural knowledge the search space within graphs can be limited but
the performance versus expressiveness trade off will always be there. This paper is meant as
an overview of the general methodology with some extra information on how model repre-
sentations could influence the performance, intuitiveness and expressiveness of the difference
model.

Keywords: Model Differencing, model based optimisations

1. Introduction

Model differencing and versioning are important steps during any type of development.
Certainly in collaboration based projects it can give a clear view of which structural changes
have been made or which implementations have been updated. It is known that the prob-
lem of determining model differences is anything but trivial but there are generally accepted
techniques to limit the search space. Do note that limiting the search space often leads to a
trade off between performance and expressiveness. Given the purpose of the application one
might prefer performance over expressiveness but in general when developing models one can
argue that understanding what impact made differences have is more important. Therefore
the search for intuitive and expressive model differencing algorithms still continue.

Email address: joeri.reyns@student.uantwerpen.be (Joeri Reyns)

December 11, 2015



For now this paper provides a general overview of the thought process of how to tackle
model differencing problems and how the representation of the models could influence the
algorithms. In section 2 the general approach will be discussed based on three steps, cal-
culation, representation and visualisation. Section 3 will provide a deeper insight into the
calculation step by giving examples of how different model representations effect the differ-
ence calculations. A conclusion will be formulated in section 4 based on what is shown in
the previous sections. Lastly we will provide some ideas of future work in section 5

2. General approach

The problem of determining model differences is intrinsically complex [1] but can be
tackled by different views on the problem. The most common views to solve model differ-
ences are based on constraint satisfaction, search or optimisation views. While constraint
satisfaction tries to match certain elements based on their responsibilities it is not always
that much different from using search techniques to find corresponding elements. Therefor
the representation of the model often gets changed to shift it towards a representation where
good and efficient optimisations already exist. This last part will be explained in more detail
in section 3.

2.1. Calculation

This step involves finding all the elements and checking which elements changed and
which not. This step highly depends on which representation was chosen for the model.
Also the actual modelling of the types of changes can be different but generally they all
conform to the same thought process. Lets look at [2] to explain the thought process. Here
the differences get mapped onto three different kinds of differences:

• Move Differences: Renumbering of elements and differences like rearrangement of at-
tributes or methods of a class.

• Structural Differences: Addition/deletion of attributes or elements, or indication that
an element only belongs to one of the original models because there exist no other
element with the same structure in the other model.

• Update Differences: This are differences within one single element i.e. attribute value
or name changes. This can only occur when the algorithm identifies two attributes as
similar. Otherwise it is a structural difference.

In general the calculation step will result in a list of elements contained within the model,
and a list of alteration each element has gone through.

2.2. Representation

The Representation of differences can be divided into two main techniques ”directed
deltas” and ”symmetric deltas” as explained very well by [3]. Cicchetti et Al. refers to
these techniques as visualisation techniques but here they will be presented as ways to

2



represent the alterations of the models. This is done because, although there are two different
techniques how to specify changes, there still are many options of how to actually visualise
the differences. Both techniques store the differences in a so called delta document. Delta
refers to the mathematical interpretation where it means a (small) change compared to the
original. In next two subsections we will discuss the differences between both approaches
and a deeper description will be provided based on the examples introduced in [3].

Figure 1: Different versions of a system design

2.2.1. Directed Deltas

Directed delta represents delta documents as the sequence of the operations needed to
obtain the new version from the old one. Which is actually a very procedural based way
of representing the changes. Like in programming, procedural representation leads to some
drawbacks like being quite ineffective to be adopted for documenting changes. But has
it merits when trying to model transformation rules. More will became clear after the
example:
Edit Scripts represents an implementation of the directed delta approach. Sequences of
primitive operations, like add, edit and delete, describe in procedural terms the modifications
a model has been subject to. Do note that these operations strongly relate to the calculation
algorithm because of what optimisation techniques are used. The biggest advantage of this
technique is the compositionality, by applying the composition of deltas we provide the
system a way to obtain the new document based on the older version. This property together
with the optimisation possibilities makes this technique highly appreciated for its efficiency
while readability and intuitiveness are more lacking [3].

3



2.2.2. Symmetric Deltas

Symmetric delta represents delta documents as the set difference between two compared
versions. Also often referred to as coloring techniques which present advantages over pro-
cedural methods, for instance differences can be shown as a model which enhances the
intuitiveness and can provide the basis for a variety of subsequent analysis. Like directed
deltas Cicchetti et Al. also provided an example for coloring techniques:
Coloring techniques permit the modifications to be displayed in a diagram which is the union
of the two base models, with the common parts of both base diagrams painted black and
the specific elements denoted by color, tags or symbols respectively. It is a symmetric delta
approach since it directly compares two versions of a model and highlights the changes. One
can see that by showing both models it becomes more beneficial towards the designer be-
cause it enhances intuitiveness and readability. However this only works if the base models
are not to large and not too many updates are applied to the same elements.

Figure 2: An example of a coloring technique

4



2.3. Visualisation

Visualisation is an important part of model differencing because it defines how intuitive
and readable the differences are based on the expressiveness of the representation technique.
The best way would be to develop a concrete syntax which maximises these properties. But
concrete syntax development is not really in the scope of model differencing and therefor we
will leave it at that.

3. Model representation based optimisations

3.1. String based optimisations

When representing a model as just a document with lines of text the differencing can be
done by lexicographical analysis. Which is probably the easiest and most commonly used
type of versioning. Both [4] and [5] present existing tools and their downsides. Next follows
a citation from [4] which very well captures the string based versioning.
”There has been some work that models the changes of a systems components in terms of
CVS-like deltas, which record lines of code that have been added, deleted, or changed, as
reported by GNU diff-like tools. These approaches are simple to implement, since it is easy
to extract the deltas from a versioning system, such as Concurrent Version System (CVS).
Such delta reports are intended to assist software developers in merging different revisions
of the system source code. However, GNU diff-like tools are essentially lexical-differencing
tools and ignore the high-level logical/ structural changes of the software system. When the
intension is to build an accurate evolutionary history of a software system, GNU diff misses
a lot of pertinent information. For example, a class renaming or a method movement to
another class would most likely be reported as two separate activities: the original entity
has been removed and the modified one has been added.”
In other words, if we want a more expressive versioning system, we need a way to add domain
specific knowledge to the models. Therefor we will further look into some examples based
on trees and graphs where the abstraction level enables us to add this kind of information
which will result in a performance trade off.

3.2. Tree based optimisations

Given a tree based model representation it becomes apparent that structural differences
are easier to find while the complexity does not change that much as shown by [6] where they
use an xml based representation (which can be seen as a tree structure) where the easiness
of lexicographical analysis can still be used but augmented by extra structural information.

5



Figure 3: Tree based edit script example

Figure 4: Tree representation example

6



3.3. Graph based optimisations

Calculating model differences is a difficult task since within graphs it relies on model
matching, which can be reduced to graph isomorphism: the problem of finding correspon-
dences between two graphs. Theoretically it is proven that the graph isomorphism problem
is NP-hard [1]. But this does not mean that there are no tricks to deal with this complexity.
[4] Provides their own graph based solution for java/uml based differencing while [1] lists
some known techniques to add more information to the graph in such a way the isomorphism
problem gets easier.

• Static Identity-Based Matching: Here it is assumed that each model element has a
persistent and non-volatile unique identifier that is assigned upon creation (AToMPM).

• Signature-Based Matching: In this technique, the identity of each element is not static,
but instead it is a signature calculated dynamically from the values of its features by
means of a (user)defined function.

• Similarity-Based Matching: Above two methods solve the problem in a sort of true /
false manner. this category treats models as typed attribute graphs and attempt to
identify matching elements based on the aggregated similarity of their features. Note
that not every feature is equally important for model matching (e.g. attribute order
or class names vs abstract features)

• Custom Language-Specific Matching Algorithms: This category uses the knowledge
of particular modelling languages so it can incorporate the semantics of the target
language in order to provide more accurate results and drastically reduce the search
space.

UMLDiff is an example of a custom language specific matching algorithm and is used
for automatically detecting structural changes between the designs of subsequent versions
of object-oriented software. It takes as input two class models of a Java software system,
reverse engineered from two corresponding code versions. It produces as output a change
tree, i.e., a tree of structural changes, that reports the differences between the two design
versions [4].

7



4. Conclusion

There is a general consensus of how to tackle model differencing. Namely first find all
elements of the models, then see in what manner they differ from the previous version.
Secondly represent these differences in a delta document by either directed or symmetric
deltas while lastly visualising the differences in a way that is useful for the problem (e.g.
uml diagrams, edit trees, ...). But clearly for the calculation step one still needs problem
specific algorithms to find the actual differences. As shown string based differencing has high
performance but lacks the expressiveness, while graphs can be just the other way around.
Adding extra information information to the graph can help because it limits the search
space. Therefor as [3] suggest it would be better to develop a tool which allows differencing
based on meta-models and their respective abstract and concrete syntax. Through the
ramification process one might be able to add extra information to a graph or tree based
representations to correctly identify changes and present them in a domain specific way to
take advantage of their expressiveness and intuitiveness. This way a general tool is generated
which can tackle the necessary challenges of most domain specific differencing problems. Do
note that in essence this still comes down to translating the problem to a different view to
solve it in a more general way.

5. Future work

For future work we could further study the UML-Diff tool and apply it to a train simu-
lation model or try to implement a versioning algorithm within AToMPM [7] to cohere with
Cicchetti et Al.’s [3] vision of having a versioning tool based on meta-models to provide do-
main specific information to the differencing algorithms to improve both intuitiveness and
expressiveness of the model differences while trying to keep the complexity low enough.

References

[1] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, Richard F. Paige, Different models for
model matching: An analysis of approaches to support model differencing.

[2] Jörg Niere, Visualizing differences of uml diagrams with fujaba, FUJABA Days 2004 (2004) 31–34.
[3] Antonio Cicchetti, Davide Di Ruscio, Alfonso Pierantonio, A metamodel independent ap-

proach to difference representation, Journal of Object Technology 6 (9) (2007) 165–185.
doi:http://www.jot.fm/issues/issues 2007 10/paper9.

[4] Zhenchang Xing and Eleni Stroulia, Umldiff: An algorithm for object-oriented design differencing.
[5] Kyriakos Komvoteas, Xml diff and patch tool.
[6] Yuan Wang, David J. DeWitt, Jin-Yi Cai, X-diff: An effective change detection algorithm for xml

documents.
[7] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Ergin, Atompm: A web-based

modeling environment., in: Demos/Posters/StudentResearch@ MoDELS, 2013, pp. 21–25.

8


